Technical Guide

Single Package Air Conditioner with Gas Heat 16 SEER (15.2 SEER2) - R-410A 208/230 V - Three-Phase 3 nominal ton to nominal ton 65 MBH to 125 MBH Heat Input Models: PCG6*36 to 60

Assembled at a facility with an ISO 9001:2015-certified Quality Management System

Due to continuous product improvement, specifications are subject to change without notice.

Visit us on the web at

www.simplygettingthejobdone.com

Additional rating information can be found at

www.ahridirectory.org

WARRANTY SUMMARY*

Standard 1-year limited parts warranty.

Standard 5-year limited compressor warranty.

10-year gas heat exchanger warranty.

*See the limited warranty certificate in the User's Information Manual for details

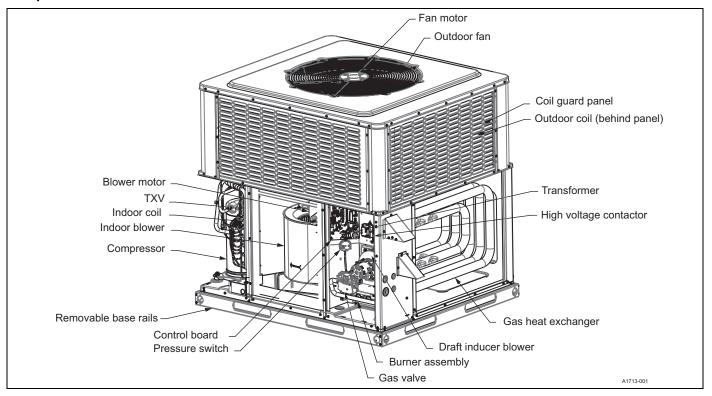
Description

These packaged cooling and heating air conditioners are designed for outdoor installation. Only utility and duct connections are required at the point of installation.

Features

- Operating efficiency All PCG6 model gas units provide a minimum AFUE of 81.0% in heating and 15.2 SEER2, 11.5 EER2 rating for cooling operation. All models meet California Low NOx requirements of 40 ng/J emission level for Air Quality Management Districts.
- On-site flexibility All model sizes use a compact design cabinet. Field convertible duct connections from side flow to downflow allow the installer to have greater flexibility with less inventory.
- Lower installation cost Installation time and costs are reduced by easy power and control wiring connections. The small base dimension means less space is required on the ground or roof. All units are completely wired, charged with R-410A, and tested before shipment. Test stations using a state-of-the-art computerized process system are used to ensure product quality. Refrigerant charge and component part numbers are verified using computers during assembly. Vital run test statistics such as system pressure, motor currents, air velocity and temperature, unit vibration, and gas system safeties are monitored and recorded by the system to ensure unit performance. Equal size side supply and return duct connections allow easy connection of ducts to match low crawl spaces without transition pieces.
- Utility connections made easy Gas and electric utility
 access is provided through the bottom or side of the unit.
 Utility connections can be made quickly and with a minimum
 amount of field labor. A field-supplied and field-installed electrical disconnect switch must be installed.
- Convertible airflow design The bottom duct openings are
 covered when they leave the factory, ready to be used for a
 side supply and side return application. If a bottom supply or
 bottom return application is required, remove the two panels
 from the bottom of the unit and place them in the side supply
 and side return duct openings. No panel cutting is required
 and no accessory panel is necessary. Convertible airflow
 design allows maximum field flexibility and minimum inventory.
- Condensate pan A corrosion-resistant, long-lasting, watertight pan is positioned below the indoor coil to collect and drain all condensate, preventing buildup of stagnant condensate. The condensate pan conforms to ASHRAE 62-19 standards (Ventilation for Acceptable Indoor Air Quality).
- Condensate drain The 3/4 in. NPT female connection is rigidly mounted to ensure correct fit and leak tight seal.
- Durable finish The cabinet is made of G90 galvanized steel with a powder paint coating for appearance and protection. The pre-treated galvanized steel provides a better paintto-steel bond, which resists corrosion and rust creep. The powder paint finish ensures less fading when exposed to sunlight, and provides superior corrosion resistance. The powder paint finish is 1,000 h salt spray tested.

- Full perimeter base rails The easily removable base rails provide a solid foundation for the entire unit and protect the unit during shipment. The rails provide forklift access from all sides, and rigging holes are also provided so an overhead crane can be used to place the units on a roof. On applications where the unit is placed on a pad, the base keeps the unit off the pad to deter corrosion. On applications where height is limited, the base rails can be removed by removing two screws in each corner.
- More attractive appearance A single-piece top cover containing a top-discharge outdoor fan arrangement requires less square footage on installation and provides a wider variety of installations. The one-piece design adds greater water integrity. Rounded corners with water drip edges add to the attractive appearance.
- Top discharge The top-discharge outdoor fan does not disrupt neighboring areas or dry out vegetation surrounding the unit. The warm air from the top mounted fan is blown up and away from the structure and any landscaping. This allows compact location on multi-unit applications.
- Outdoor coil grille All models use a stamped slotted design that provides superior impact protection against small objects during transit and after installation.
- Low operating sound level The upward airflow carries the normal operating noise up and away from the living area. The rigid top panel effectively isolates noise. Isolator mounted compressor and the rippled fins of the outdoor coil muffle the normal fan motor and compressor operating sounds. The uniquely formed base pan also aids in sound attenuation with its structural design. This design strategically places embossments in the pan for optimum strength and rigidity.
- Fan system All models operate over a wide range of design conditions with an enhanced ECM indoor blower motor. These units easily match all types of applications and provide greater on-site flexibility to match comfort requirements. The cooling speed is factory set and can be field adjusted to a second speed. The heating speed is factory set to maintain midpoint rise at the unit's heating input, but can be field adjusted. This allows for maximum comfort conditions.
- Simple control circuit A low voltage gas heat printed circuit board contains a status or diagnostic indicator light. Field thermostat wiring connects to color coded leads using twist on wire connections. Cooling controls use contactor and relays for simple application and troubleshooting. MATE-N-LOK plug connectors are used. The electrical control box is not located in the compressor compartment. The controls are mounted to allow the separate access panel to be removed for troubleshooting and maintenance without affecting the normal system operating pressures. All wiring internal to the unit is color-coded and numbered.
- High-pressure switch A high-pressure switch is standard in all units. It is an automatic reset switch. When discharge pressure reaches 650 psi, the compressor de-energizes until pressure reaches 450 psi.


- Protected compressor The compressor is internally protected against high pressure and temperature. This is accomplished by the simultaneous operation of scroll bypass and a temperature sensor, which protects the compressor if undesirable operating conditions occur. The crankcase heater ensures lubrication of the compressor at start-up by mitigating the impact of refrigerant migration and condensation when the system is off, keeping the refrigerant at a temperature higher than the coldest part of the system.
- Exclusive coil design The grooved copper tubes and enhanced aluminum fin construction of the outdoor coils improve heat transfer for maximum efficiency and durability. Indoor tube and fin coils have all aluminum construction for reliability and efficient heat transfer.
- Heat exchangers Gas heat exchangers use corrosionresistant, stainless-steel tubular construction to provide longlife, trouble free operation. Gas heat exchangers are offered with lifetime warranties as standard with registration.
- Post-purge induced draft combustion Exhausts combustion products from the heat exchanger upon completion of the heating cycle to prolong the heat exchanger life.
- Spark to burner ignition No pilot assembly required, which provides more consistent ignition in gas heating mode. This ignition is highly reliable and durable and eliminates nuisance lockouts.
- Multi port in-shot burners No field adjustment is required to mix the air and gas for natural gas or propane use. These burners are constructed of high-grade corrosion-resistant, aluminized steel.
- Low maintenance Long-life, permanently lubricated outdoor fan motor bearings and indoor blower motor bearings need no annual maintenance, adding greater reliability to the unit. Slide-out blower assembly can be easily removed for cleaning.
- Easy service access Individual access panels covering the electrical and gas controls make servicing easy. Removing these panels allows easy removal of components such as the blower assembly for maintenance and troubleshooting.
- Replacement parts The installer requires no special training to replace any of the components of these units. The number of new components has been reduced to minimize the inventory of unique parts.
- Loss of charge switch All models include a loss of charge switch to provide safe shutdown of the compressor.
- Filter frame kit All three-phase units include a filter frame kit that is shipped inside the unit from production. Field installation is required.
- Filters All three-phase units include an applicable number of 1 in. washable filters, which are shipped inside the unit from production. Field installation is required. Two filters are required for A base units. Three filters are required for B base units.

Nomenclature

Model family	PCG	PHE = packaged heat pump with electric heat
		PCG = packaged AC with gas heat
		PHG = packaged heat pump with gas heat
		PCE = packaged AC with electric heat
Nominal cooling efficiency	6	4 = standard efficiency
		6 = high efficiency
Cabinet size	В	A = small, 35.75 in. x 51.25 in.
		B = large, 45.75 in. x 51.25 in.
Nominal air conditioning cooling capacity Btu/h x 1000	48	24 = 24,000 Btu/h
		30 = 30,000 Btu/h
		36 = 36,000 Btu/h
		42 = 42,000 Btu/h
		48 = 48,000 Btu/h
		60 = 60,000 Btu/h
Gas heating input Btu/h x 1000		050 = 50,000 Btu/h input
		065 = 65,000 Btu/h input
	075	075 = 75,000 Btu/h input
	073	100 = 100,000 Btu/h input
		125 = 125,000 Btu/h input
		blank = electric heat
Voltage-phase-frequency	3	2 = 208/230-1-60
		3 = 208/230-3-60
		4 = 460-3-60
NOx approval	х	X = Low NOx
	^	blank = not Low NOx
Generation level	4	1 = first generation
		2 = second generation
		3 = third generation
		4 = fourth generation
Revision level	Α	A = original release
		B = second release

Nomenclature example: PCG6B480753X4A is a packaged AC with gas heat, high efficiency, large cabinet, 4 ton, 75,000 Btu/h gas heat, 208/230 V, three-phase, Low NOx model, fourth generation, original release.

Component location

Unit limitations

			Unit limitations	
Model	Voltage-phase-frequency	Applied v	Outdoor DB temperature (°F)	
		Minimum	Maximum	Maximum (°F)
All Models	208/230-3-60	187	252	125

Applications and accessories

Application limitations											
Packaged	Air temper		Air temper indoor coil								
equipment series	Minimum	Maximum	Minimum	Maximum							
	DB cool	DB cool	WB cool	WB cool							
PCG6	55 125 57 72										

- Anchor bracket kit (S1-1HK0601) This kit firmly anchors PCG, PCE, PHE, and PHG packaged units to a pad or support structure. When correctly installed, the kit is approved for ground-mounted or roof-mounted applications, wind load certified, and listed with the State of Florida. Refer to https://floridabuilding.org for this listing.
- Flue exhaust extension kit (S1-1FE0422) The purpose of this kit is to divert flue gas up and away from walkways or fresh air intakes. Use the kit when installing PCG or PHG packaged units if required.
- Propane conversion kit (S1-1NP0703, S1-1NP0704) Kit includes burner orifices, gas valve conversion, and installation instructions necessary to field convert unit from natural gas to propane.
- Economizer for downflow applications (S1-2EE04710024, S1-2EE04710124) - Modulating integrated economizer provides simultaneous operation between the mechanical cooling and economizer operation. Independent blade design ensures adequate control and less than 1% leak rate. Includes hood and mesh bird screen

filter integrated into the hood, dry bulb sensor, and barometric relief damper. Separate field accessories of single enthalpy and dual enthalpy are also available.

- Economizer for horizontal applications (S1-2EE04710224, S1-2EE04710324) - Modulating integrated economizer provides simultaneous operation between the mechanical cooling and economizer operation. Independent blade design ensures adequate control and less than 1% leak rate. Includes hood and mesh bird screen filter integrated into the hood and dry bulb sensor. Separate field accessories of single enthalpy and dual enthalpy are also available.
- Barometric relief hood (S1-1RD0501) Used in conjunction
 with a horizontal economizer, the Barometric Relief Hood
 helps to equalize the building pressure caused by the fresh
 air introduced through the economizer fresh air hood.
- Single/dual enthalpy sensor (S1-HE-69630NS-2D) This sensor replaces the supply air temperature dry bulb sensor standard in the economizer kit. The sensor enables improved economizer operation by sensing the dry bulb temperature of indoor supply air plus the enthalpy content of the outdoor air.
- Duct/unit mount CO₂ kit (S1-2AQ04700924) Sensor kit detects CO₂ levels automatically and overrides the economizer when CO₂ levels rise above the preset limits.
- Wall mount CO₂ kit (S1-2AQ04701024) Sensor kit detects CO₂ levels automatically and overrides the economizer when CO₂ levels rise above the preset limits.

- Supply air temperature sensor kit (S1-TE-63616E-2D) -Outdoor supply air temperature sensor kit used with economizers
- Filter/frame kit (provided)
 (S1-1FF0602, S1-1FF0601) Kit contains the necessary
 hardware to field install return air filters into the base unit.
 The filter rack is suitable for either 1 in. filters or 2 in. filters.
- Filter (S1-02647812000) Washable 1 in. filter. Two filters are required for A base units. Three filters are required for B base units. Washable filters are included inside shipped units for field installation.
- Motorized fresh air damper (S1-2MD04705224, S1-2MD04705124) - Designed for duct mounted side supply and return and unit mounted down supply and return applications. The damper capable of providing 0% to 50% of outdoor air (field supplied). The damper closes on power loss and includes hood and screen assembly.
- Rectangle to round horizontal adapter (S1-1AK0110, S1-1AK0111) - Kit includes one supply and one return air rectangle to round duct adapter. Adapters are preformed and designed to fit over current horizontal duct openings on the base unit. The transition is from rectangle to 12 in. round for the 1AK0110 kit and from rectangle to 14 in. round for the 1AK0111 kit.
- Rectangle to round downflow adapter (S1-1AK0108, S1-1AK0109) - Kit includes one supply and one return air rectangle to round duct adapter. Adapters are preformed and designed to fit into current downflow duct openings on the roof curb. Transition is from rectangle to 16 in. round for the 1AK0108 kit and from rectangle to 18 in. round for the 1AK0109 kit.
- Roof curbs (S1-1RC0503, S1-1RC0501) NRCA approved curbs provide correct fit to base unit for rooftop installations. Curbs are designed to be assembled through hinge pins in each corner. Kit also provides seal strip to ensure an airtight seal. These are 8 in. high roof curbs.

- Roof curbs (S1-1RC0504, S1-1RC0502) NRCA approved curbs provide correct fit to base unit for rooftop installations. Curbs are designed to be assembled through hinge pins in each corner. Kit also provides seal strip to ensure an airtight seal. These are 14 in. high roof curbs.
- Transition curb kits (S1-1TC01*) These adapter kits allow
 use of existing installed roof curbs, matching the PCG6 unit
 footprint to Affinity roof curbs or Carrier, Trane, or Goodman
 roof curbs. Curb adapters are optional for current generation
 Carrier replacements, but are recommended for previous
 generation applications. Refer to the PCG6 price pages for
 more details.
- Manual outdoor damper (S1-1FA0502, S1-1FA0501) Provides 0% to 50% outdoor air capability (field adjustable).
 Designed for duct mounted side supply and return applications. The damper includes hood and screen assembly.
- Thermostat Compatible thermostat controls are available through accessory sourcing. For optimum performance, these outdoor units are fully compatible with our residential Hx[™] Touch Screen Thermostat available through Source 1. For more information, refer to the *Thermostats & Controllers* section at <u>www.simplyqettingtheiobdone.com</u>.
- Wall thermostat The units are designed to operate with standard, 24 V electronic and electromechanical thermostats. All units can operate with a single-stage heat thermostat, but require a multistage thermostat for cooling.
- Low ambient kit (S1-2LA04701024) Kit provides necessary hardware to convert unit to operate in cooling cycle down to 0°F. Standard unit operation is 55°F.
- Base rail hole cover kit (\$1-1HC0101) Kit provides necessary hardware to close off openings in base rails to block off openings and prevent animal entrance.

Guide specifications

General

Units shall be assembled at a facility with an ISO 9001:2015-certified Quality Management System. Packaged units give you the flexibility and choices you need in today's market. These packaged cooling and heating air conditioners are designed for outdoor installation. Only utility and duct connections are required at the point of installation. The single-stage gas fired heaters have stainless steel tubular heat exchangers and spark to burner ignition. They are available in natural gas with field conversion to propane.

Description

Units shall be factory-assembled, single packaged, electric cooling and gas heating units, designed for outdoor installation. For SEER ratings, refer to the technical literature. They shall have built-in, equal size, field convertible duct connections for supply and return or horizontal supply and return. The units shall be factory wired, piped, charged with R-410A refrigerant, and factory tested before shipment. All unit wiring shall be both numbered and color coded. All models shall be rated in accordance with DOE and AHRI test procedures for both heating and cooling operation. Units shall be CSA listed and classified to ANSI Z21.47/CAN/ CSA 2.3 standards and UL 1995/CAN/CSA No. 236-M90 standards.

Unit cabinet

Unit cabinet shall be constructed of G-90 galvanized, powderpainted steel, certified at 1,000 h salt spray test according to ASTM-B117 standards. The unit top shall be a single-piece design, with drip edges and no-seam corners to provide optimum water integrity. Unit shall have a rigidly mounted outdoor coil guard to provide protection from objects and personnel after installation. Indoor blower section shall be insulated with foil-faced or foam insulation, fastened to prevent insulation from entering the air stream. Cabinet panels shall be separate and easily removable for servicing and maintenance. Unit shall be built on a formed, design base pan, with embossments at critical points to add strength and rigidity and aid in minimizing sound. Full perimeter base rails shall be provided to ensure reliable transit of equipment and facilitate overhead rigging, allowing truck access and correct sealing on roof curb applications. Base rails shall be easily removable, when required to lower unit height. Filters shall be field installed, furnished, and accessible through a removable access door, sealed airtight. The unit's vertical discharge and return duct configuration shall be designed to fit between standard 24 in. O.C. beams without modification to building structure, duct work, and base unit. Condensate pan shall be internally sloped and conform to ASHRAE 62-19 self-draining standards, with 3/4 in. NPT female ridged mount connection.

Indoor blower assembly - Blower shall be direct drive design. Blower wheel shall be double-inlet type with forward-curved blades, dynamically balanced to operate smoothly throughout the entire range of operation. Airflow design shall be constant air volume. Bearings shall be sealed and permanently lubricated for longer life and no maintenance. Blower assembly shall be a slide-out design for easy removal and cleaning. Indoor blower motors shall be equipped with a standard high efficiency brushless DC motor (constant torque), also known as a standard ECM motor.

Outdoor fan assembly - The outdoor fan shall be of the direct-driven propeller type, discharge air vertically, have aluminum blades riveted to a corrosion resistant steel spider bracket, and be statically balanced for smooth operation. The outdoor fan motor shall be totally enclosed with permanently lubricated bearings and internally protected against overload conditions.

Refrigerant components

Compressors:

- Shall be fully hermetic type, direct drive, internally protected with internal high-pressure relief and over temperature protection. The hermetic motor shall be suction gas cooled and have a voltage range of ± 10% of the unit nameplate voltage.
- Shall have internal isolation and sound muffling to minimize vibration and noise, and be externally isolated on a dedicated, independent mounting.

Coils:

- Indoor coils shall have aluminum plate fins mechanically bonded to seamless internally enhanced aluminum tubes with all joints brazed.
- Indoor coil shall be of the direct expansion, draw through design.
- Outdoor coils shall have aluminum plate fins mechanically bonded to seamless internally enhanced copper tubes with all joints brazed.
- · Outdoor coil shall be draw through design.

Refrigerant circuit and refrigerant safety components shall include the following:

- Thermal expansion valve (TXV) that is factory mounted and provided
- Filter drier and strainer to eliminate any foreign matter

Gas heating section (if equipped)

Heat exchanger and exhaust system are constructed of corrosion-resistant materials and shall be designed with induced draft combustion with post purge logic and redundant main gas valve. The heat exchanger shall be of the tubular type, constructed of stainless steel for corrosion resistance and allowing minimum mixed air entering temperature of 40°F. Burners shall be of the in-shot type, constructed of aluminumized steel. All gas piping shall enter the unit cabinet at a single location through either the side or bottom, without any field modifications. An integrated control board shall provide timed control of indoor blower functioning and burner ignition.

The heating section shall be provided with the following minimum protection:

- · Primary high-temperature limit switch
- · Induced draft pressure switch
- Flame roll out switch or switches (manual reset)
- · Flame proving controls

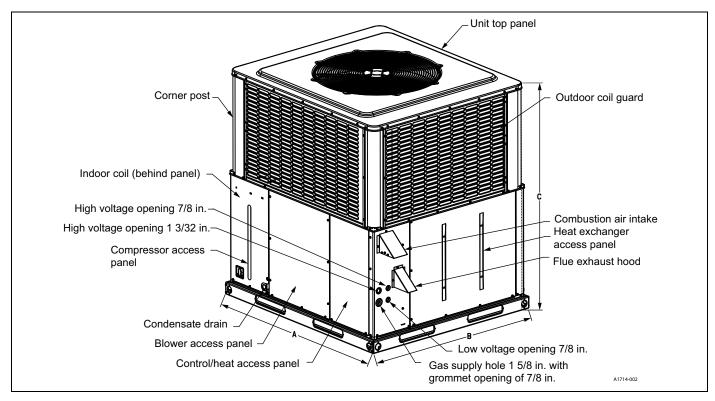
All gas heat models meet the California requirement for emissions of less than 40 ng/J (California requirement on single-phase models only).

Physical data

	PCG6A36	PCG	6B48	PCG	6B60
	3.0			5.	
Gross capacity at AHRI A point (MBH)	36.2	47	.5	60	0.0
AHRI net capacity (MBH)	35.0	46	.0	58	3.0
EER	12.5	12	.0	12	2.0
EER2	11.5	11	.5	11	.5
SEER	16.0	16	.0	16	5.0
SEER2	14.7	15	.2	15	5.2
Nominal CFM	1275	15	50	17	75
System power (kW)	3.0	4.	0	5.	.0
	R-410A	R-4	10A	R-4	10A
Refrigerant charge (lb-oz)	7-2	7-	14	10	-2
Heating model	75	65	100	65	100
Heat input - high fire (kBtu)	75	65	100	65	100
	60	52	81	52	81
	49	43	65	43	65
	39	34	53	34	53
	81.0	81.0	81.0	81.0	81.0
Number of burners	3	2	3	2	3
	2	2	2	2	2
	40 to 70	40 to	70	40 to	o 70
	20 to 50	25 to	55	25 to	o 55
. ,	0.5	0.	5	0.	.5
. ,	180	18	30	18	30
	1/2	1/	2	1/	/2
	51 1/4	51	1/4	51	1/4
	35 3/4	45	3/4	45	3/4
				5	
		· ·	-		
				2	
_					
					2
				2	
	7			7	
1 1	Interlaced	Interl	aced	Interl	aced
5 5.					
					/8
` '					
_				2	
` '					
	· · · · · · · · · · · · · · · · · · ·				ect
				1	
-					/3
					00
	Centrifugal	Centr		Centr	
	Ochanagai				
Type Motor (hp)	1/2	3	/4	1	1
Motor (hp)	1/2		/4		avimum
	1/2 1400 Maximum 48	1400 Ma	aximum	1400 Ma	aximum
	AHRI net capacity (MBH) EER EER2 SEER SEER2 Nominal CFM System power (kW) Refrigerant type Refrigerant charge (lb-oz) Heating model Heat input - high fire (kBtu) Heat output - low fire (kBtu) Heat output - low fire (kBtu) Heat output - low fire (kBtu) AFUE (%) Number of burners Number of stages Temperature rise range - high fire (°F) Temperature rise range - low fire (°F) Maximum static pressure (in. W.C.) Maximum outlet air temperature (°F) Gas piping connection (in.) Length Width Height Type Stages Face area (sq ft) Rows Fins per inch Tube diameter (mm) Circuitry type Face area (sq ft) Rows Fins per inch Tube diameter (in.) Circuitry type Refrigerant control Fan diameter (in.) Type Drive type Number of speeds Motor (hp) each RPM Nominal total CFM Blower size (in.)	Gross capacity at AHRI A point (MBH) 36.2 AHRI net capacity (MBH) 35.0 EER	Gross capacity at AHRI A point (MBH) 36.2 47	Scross capacity at AHRI A point (MBH) 36.2 47.5	Scross capacity at AHRI A point (MBH) 36.2 47.5 60

Note: Field-supplied external filters must be sized so as not to exceed 300 fpm air velocity through disposable filters. All three-phase models include an internal filter rack kit and washable filters. Refer to the instructions supplied with the kit for replacement filter sizes. Filter sizes: A = 20 in. x 20 in., B = 20 in. x 30 in.

Condenser	ID CFM			650					850					1050		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
emp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	27.7	29.5	27.8	32.6	34.8	31.0	31.9	30.1	36.6	37.2	34.3	34.4	32.4	40.7	39
55 / 45	Sensible capacity (MBH)	27.4	24.5	19.5	21.3	16.7	30.7	28.5	22.6	24.6	18.7	34.1	32.6	25.7	27.9	20
	Total power (kW)	1.33	1.31	1.32	1.31	1.29	1.39	1.37	1.38	1.37	1.35	1.44	1.43	1.43	1.42	1.4
	Total capacity (MBH)	25.3	27.3	26.2	31.0	33.8	28.6	29.6	28.3	34.4	37.6	31.8	32.0	30.5	37.8	41
65 / 55	Sensible capacity (MBH)	25.0	23.0	18.6	20.6	16.3	28.2	26.8	21.7	23.8	18.6	31.5	30.5	24.7	27.0	20
	Total power (kW)	1.45	1.44	1.44	1.43	1.41	1.51	1.50	1.50	1.49	1.47	1.56	1.55	1.56	1.55	1.
	Total capacity (MBH)	23.0	25.0	24.6	29.5	32.8	26.2	27.3	26.6	32.3	38.0	29.3	29.6	28.6	35.0	43
75 / 63	Sensible capacity (MBH)	22.5	21.6	17.7	19.8	16.0	25.7	25.0	20.8	23.0	18.5	28.9	28.5	23.8	26.1	21
	Total power (kW)	1.58	1.56	1.57	1.55	1.53	1.63	1.62	1.62	1.61	1.59	1.67	1.67	1.68	1.67	1.
	Total capacity (MBH)	22.3	22.9	22.8	27.3	30.3	25.2	24.9	25.9	29.6	33.9	28.1	27.0	29.1	31.9	37
85 / 69	Sensible capacity (MBH)	22.0	20.4	16.8	18.6	14.7	24.9	23.4	19.6	21.7	17.0	27.9	26.3	22.5	24.7	19
	Total power (kW)	1.74	1.73	1.73	1.71	1.69	1.79	1.78	1.79	1.77	1.75	1.84	1.84	1.84	1.83	1.
	Total capacity (MBH)	21.7	20.7	20.9	25.2	27.8	24.3	22.5	25.2	27.0	29.8	27.0	24.3	29.6	28.9	3′
95 / 75	Sensible capacity (MBH)	21.5	19.2	15.8	17.4	13.4	24.2	21.7	18.5	20.4	15.5	26.8	24.2	21.3	23.3	17
	Total power (kW)	1.90	1.89	1.89	1.87	1.85	1.95	1.95	1.95	1.93	1.91	2.00	2.00	2.01	1.99	1.
	Total capacity (MBH)	19.6	18.9	18.6	22.4	25.0	21.7	20.5	21.7	24.0	26.8	23.9	22.0	24.7	25.5	28
105 / 83	Sensible capacity (MBH)	19.5	17.9	14.8	16.0	12.3	21.6	19.8	17.0	18.8	14.3	23.8	21.8	19.2	21.6	16
	Total power (kW)	2.11	2.11	2.11	2.09	2.07	2.16	2.16	2.17	2.15	2.13	2.22	2.22	2.23	2.21	2.
	Total capacity (MBH)	17.5	17.2	16.4	19.7	22.4	19.2	18.5	18.2	21.0	23.8	21.0	19.7	20.0	22.3	25
115 / 89	Sensible capacity (MBH)	17.5	16.6	13.9	14.7	11.2	19.2	18.1	15.5	17.3	13.1	20.8	19.6	17.2	19.9	14
	Total power (kW)	2.32	2.32	2.32	2.31	2.28	2.37	2.37	2.38	2.36	2.35	2.43	2.43	2.44	2.42	2.
	Total capacity (MBH)	15.5	15.5	14.2	17.0	19.7	16.7	16.5	14.7	18.0	20.9	18.0	17.5	15.3	19.1	22
125 / 95	Sensible capacity (MBH)	15.4	15.3	12.9	13.3	10.2	16.7	16.3	14.1	15.8	11.9	17.9	17.3	15.2	18.2	13
	Total power (kW)	2.52	2.53	2.53	2.52	2.50	2.58	2.58	2.59	2.58	2.56	2.64	2.63	2.65	2.63	2.


Cooling perfor	rmance data - 3 ton (h	igh s	peed)	- mc	del r	numb	er: P	CG6/	436							
Condenser	ID CFM			950					1150					1350		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
temp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	38.1	41.0	39.6	44.7	47.8	41.2	43.3	41.8	48.4	49.9	44.4	45.6	44.0	52.0	52.0
55 / 45	Sensible capacity (MBH)	32.5	29.4	24.2	25.2	19.8	35.6	32.6	26.8	28.0	21.5	38.7	35.9	29.4	30.8	23.2
	Total power (kW)	1.95	1.96	1.97	1.99	2.01	2.04	2.04	2.05	2.07	2.09	2.12	2.13	2.12	2.14	2.17
	Total capacity (MBH)	35.7	38.2	37.4	43.0	46.7	38.7	40.3	39.5	45.8	49.8	41.6	42.5	41.5	48.6	52.9
65 / 55	Sensible capacity (MBH)	30.4	27.9	23.2	24.5	19.5	33.2	30.9	25.7	27.2	21.4	36.0	34.0	28.2	29.8	23.2
	Total power (kW)	2.10	2.12	2.12	2.14	2.17	2.19	2.19	2.19	2.22	2.24	2.27	2.27	2.27	2.29	2.32
	Total capacity (MBH)	33.2	35.4	35.2	41.2	45.7	36.1	37.4	37.1	43.2	49.7	38.9	39.4	39.0	45.2	53.7
75 / 63	Sensible capacity (MBH)	28.2	26.4	22.1	23.9	19.2	30.7	29.2	24.6	26.4	21.2	33.2	32.0	27.0	28.8	23.2
	Total power (kW)	2.25	2.27	2.26	2.29	2.32	2.34	2.35	2.34	2.37	2.39	2.42	2.42	2.41	2.44	2.47
	Total capacity (MBH)	32.1	33.1	32.9	38.6	42.7	34.7	34.9	34.5	40.4	45.7	37.3	36.7	36.2	42.3	48.7
85 / 69	Sensible capacity (MBH)	27.4	25.2	21.0	22.7	18.0	29.8	27.9	23.3	27.0	19.8	32.2	30.6	25.7	31.2	21.7
	Total power (kW)	2.45	2.46	2.45	2.48	2.50	2.53	2.53	2.53	2.55	2.57	2.61	2.61	2.60	2.63	2.65
	Total capacity (MBH)	30.9	30.8	30.5	36.0	39.7	33.3	32.4	31.9	37.7	41.7	35.7	33.9	33.4	39.4	43.6
95 / 75	Sensible capacity (MBH)	26.6	24.1	19.8	21.4	16.7	28.8	26.7	22.1	27.5	18.4	31.1	29.2	24.3	33.6	20.2
	Total power (kW)	2.64	2.64	2.64	2.66	2.68	2.72	2.72	2.72	2.74	2.75	2.80	2.79	2.79	2.81	2.83
	Total capacity (MBH)	28.5	27.9	27.5	32.7	36.4	30.3	29.5	28.6	34.1	38.1	32.2	31.0	29.8	35.5	39.8
105 / 83	Sensible capacity (MBH)	24.6	22.4	18.5	20.0	15.6	26.3	24.6	20.6	24.7	17.2	28.0	26.7	22.7	29.4	18.8
	Total power (kW)	2.91	2.91	2.91	2.93	2.95	2.99	2.99	2.98	3.00	3.02	3.07	3.06	3.05	3.08	3.10
	Total capacity (MBH)	26.1	25.2	24.5	29.5	33.2	27.5	26.7	25.4	30.7	34.6	28.8	28.2	26.3	31.8	36.1
115 / 89	Sensible capacity (MBH)	22.7	20.7	17.3	18.7	14.4	23.9	22.5	19.2	22.0	16.0	25.1	24.4	21.1	25.3	17.6
	Total power (kW)	3.17	3.17	3.16	3.18	3.21	3.25	3.25	3.24	3.26	3.28	3.33	3.32	3.31	3.33	3.36
	Total capacity (MBH)	23.8	22.4	21.6	26.3	30.0	24.6	23.9	22.2	27.2	31.2	25.4	25.4	22.9	28.1	32.3
125 / 95	Sensible capacity (MBH)	20.7	19.0	16.0	17.3	13.3	21.4	20.5	17.7	19.3	14.8	22.1	22.0	19.4	21.3	16.3
	Total power (kW)	3.43	3.44	3.42	3.44	3.47	3.51	3.51	3.49	3.51	3.54	3.59	3.59	3.57	3.59	3.62

Condenser	ID CFM			950					1150					1350		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
temp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	37.0	40.6	40.0	44.6	49.0	39.6	42.6	41.6	48.4	50.7	42.2	44.6	43.2	52.2	52.4
55 / 45	Sensible capacity (MBH)	36.8	34.1	28.9	29.5	24.2	39.0	37.8	31.4	32.5	25.9	41.3	41.4	33.9	35.5	27.5
	Total power (kW)	1.73	1.71	1.72	1.71	1.70	1.79	1.78	1.78	1.78	1.77	1.84	1.84	1.84	1.84	1.83
	Total capacity (MBH)	34.5	37.4	36.9	42.1	46.5	37.2	39.3	38.6	44.9	49.6	39.9	41.3	40.2	47.6	52.6
65 / 55	Sensible capacity (MBH)	34.1	32.2	27.0	28.3	23.0	36.5	35.6	29.6	31.2	24.9	39.0	39.1	32.2	34.0	26.8
	Total power (kW)	1.91	1.89	1.90	1.88	1.87	1.96	1.96	1.96	1.95	1.94	2.02	2.02	2.02	2.01	2.00
	Total capacity (MBH)	32.1	34.3	33.9	39.6	44.1	34.8	36.1	35.5	41.3	48.5	37.5	38.0	37.2	43.0	52.9
75 / 63	Sensible capacity (MBH)	31.4	30.2	25.1	27.1	21.7	34.0	33.5	27.8	29.8	24.0	36.7	36.8	30.6	32.5	26.2
	Total power (kW)	2.08	2.07	2.08	2.06	2.04	2.14	2.13	2.14	2.12	2.11	2.20	2.19	2.20	2.18	2.17
	Total capacity (MBH)	30.1	31.2	30.9	36.4	40.6	32.6	32.8	32.3	38.0	43.6	35.1	34.5	33.8	39.5	46.6
85 / 69	Sensible capacity (MBH)	29.5	28.6	23.4	25.3	20.2	31.9	31.1	26.1	28.0	22.2	34.3	33.6	28.8	30.7	24.3
	Total power (kW)	2.31	2.30	2.30	2.28	2.27	2.37	2.36	2.36	2.35	2.33	2.43	2.42	2.42	2.41	2.39
	Total capacity (MBH)	28.2	28.1	28.0	33.2	37.2	30.4	29.6	29.2	34.6	38.7	32.7	31.0	30.4	36.0	40.3
95 / 75	Sensible capacity (MBH)	27.6	27.0	21.7	23.6	18.6	29.8	28.7	24.3	26.2	20.5	32.0	30.4	26.9	28.8	22.4
	Total power (kW)	2.53	2.52	2.52	2.51	2.49	2.59	2.58	2.59	2.57	2.55	2.65	2.65	2.65	2.64	2.61
	Total capacity (MBH)	25.0	24.7	24.2	29.0	32.7	26.9	26.1	25.3	30.0	33.9	28.9	27.5	26.3	31.1	35.2
105 / 83	Sensible capacity (MBH)	24.5	23.9	20.0	21.6	16.8	26.4	25.4	21.9	23.9	18.6	28.2	26.9	23.9	26.2	20.4
	Total power (kW)	2.81	2.80	2.81	2.79	2.78	2.87	2.87	2.87	2.86	2.84	2.93	2.93	2.93	2.92	2.90
	Total capacity (MBH)	21.9	21.5	20.6	24.8	28.4	23.6	22.7	21.5	25.6	29.3	25.2	24.0	22.3	26.3	30.2
115 / 89	Sensible capacity (MBH)	21.5	20.8	18.3	19.7	15.0	23.1	22.2	19.6	21.7	16.7	24.6	23.5	20.9	23.7	18.4
	Total power (kW)	3.08	3.08	3.08	3.07	3.06	3.14	3.14	3.14	3.13	3.12	3.20	3.20	3.20	3.20	3.19
	Total capacity (MBH)	18.9	18.2	17.0	20.7	24.1	20.2	19.4	17.7	21.1	24.7	21.5	20.5	18.3	21.6	25.3
125 / 95	Sensible capacity (MBH)	18.5	17.8	16.7	17.7	13.3	19.8	19.0	17.3	19.4	14.9	21.0	20.1	17.9	21.1	16.5
	Total power (kW)	3.35	3.35	3.36	3.34	3.34	3.41	3.41	3.41	3.41	3.41	3.47	3.48	3.47	3.47	3.47

Condenser	ID CFM			1350					1550					1750		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
temp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	49.9	54.5	53.0	59.9	64.4	52.3	56.4	54.9	62.0	66.5	54.7	58.2	56.9	64.1	68.6
55 / 45	Sensible capacity (MBH)	49.6	45.6	38.0	39.6	31.5	52.0	48.8	40.5	42.3	33.2	54.3	52.0	43.0	44.9	35.0
	Total power (kW)	2.63	2.66	2.66	2.69	2.75	2.72	2.74	2.74	2.77	2.82	2.81	2.82	2.82	2.85	2.90
	Total capacity (MBH)	47.4	50.9	50.0	56.8	61.9	49.5	52.5	51.7	58.6	64.4	51.6	54.2	53.5	60.4	66.8
65 / 55	Sensible capacity (MBH)	47.0	43.3	36.4	38.1	30.5	49.1	46.4	38.9	40.6	32.4	51.2	49.5	41.4	43.0	34.3
	Total power (kW)	2.84	2.86	2.86	2.90	2.95	2.93	2.94	2.94	2.98	3.03	3.02	3.02	3.02	3.06	3.1
	Total capacity (MBH)	44.8	47.2	47.0	53.6	59.3	46.7	48.7	48.6	55.2	62.2	48.6	50.1	50.1	56.7	65.
75 / 63	Sensible capacity (MBH)	44.4	41.0	34.8	36.5	29.6	46.2	44.0	37.3	38.9	31.6	48.1	47.0	39.8	41.2	33.5
	Total power (kW)	3.05	3.05	3.06	3.11	3.16	3.14	3.13	3.14	3.19	3.24	3.23	3.21	3.22	3.27	3.32
	Total capacity (MBH)	42.4	44.1	43.9	50.1	55.4	44.3	45.4	45.2	51.5	57.4	46.2	46.7	46.5	52.9	59.5
85 / 69	Sensible capacity (MBH)	42.0	39.5	33.2	34.7	27.7	43.9	42.4	35.5	37.1	29.5	45.7	45.2	37.9	39.4	31.3
	Total power (kW)	3.31	3.32	3.32	3.37	3.41	3.40	3.40	3.40	3.45	3.49	3.49	3.48	3.48	3.53	3.5
	Total capacity (MBH)	40.0	41.1	40.9	46.6	51.4	41.9	42.2	41.9	47.8	52.7	43.8	43.4	42.9	49.1	54.0
95 / 75	Sensible capacity (MBH)	39.6	38.0	31.6	32.9	25.8	41.5	40.7	33.8	35.2	27.4	43.3	43.2	35.9	37.6	29.1
	Total power (kW)	3.58	3.58	3.58	3.62	3.67	3.66	3.66	3.66	3.70	3.75	3.75	3.74	3.74	3.78	3.83
	Total capacity (MBH)	36.8	37.1	36.6	42.1	46.8	38.2	38.2	37.4	43.1	47.8	39.6	39.3	38.1	44.1	48.9
105 / 83	Sensible capacity (MBH)	36.4	35.0	29.6	30.8	23.8	37.8	37.1	31.5	33.1	25.4	39.2	39.2	33.4	35.3	27.0
	Total power (kW)	3.96	3.96	3.95	4.00	4.04	4.05	4.04	4.03	4.07	4.12	4.13	4.12	4.11	4.15	4.20
	Total capacity (MBH)	33.6	33.3	32.6	37.8	42.3	34.6	34.3	33.0	38.5	43.1	35.6		33.5	39.3	43.9
115 / 89	Sensible capacity (MBH)	33.3		27.6	28.8	21.9	34.3	33.6	29.3	31.0	23.4	35.3		31.0	33.1	25.0
	Total power (kW)	4.33	4.32	4.31	4.36	4.39	4.42	4.40	4.39	4.43	4.47	4.50	4.49	4.46	4.51	4.55
	Total capacity (MBH)	30.5	29.4	28.5	33.5	37.8	31.1	30.4	28.7	33.9	38.3	31.7	31.4	28.9	34.4	38.9
125 / 95	Sensible capacity (MBH)	30.2	29.1	25.7	26.7	19.9	30.8	30.1	27.2	28.9	21.4	31.3	31.0	28.7	31.0	22.9
	Total power (kW)	4.70	4.69	4.67	4.72	4.75	4.79	4.77	4.75	4.80	4.83	4.88	4.85	4.82	4.87	4.91

Condenser	ID CFM			1150					1350					1550		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
temp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	48.1	53.0	52.4	58.5	63.4	52.5	54.9	54.7	63.1	65.5	56.9	56.7	57.0	67.6	67.6
55 / 45	Sensible capacity (MBH)	47.7	44.6	37.8	38.5	31.3	50.8	48.3	41.1	42.0	33.2	53.9	52.0	44.5	45.5	35.2
	Total power (kW)	2.18	2.17	2.19	2.18	2.18	2.25	2.24	2.25	2.24	2.24	2.32	2.31	2.31	2.31	2.3
	Total capacity (MBH)	45.6	48.8	48.3	54.5	59.8	49.4	50.6	50.2	58.2	62.8	53.2	52.4	52.1	61.9	65.
65 / 55	Sensible capacity (MBH)	45.0	42.2	35.5	36.5	29.5	48.1	46.0	38.6	39.9	31.6	51.3	49.7	41.6	43.3	33.
	Total power (kW)	2.41	2.40	2.41	2.40	2.40	2.47	2.47	2.47	2.47	2.46	2.54	2.54	2.54	2.53	2.5
	Total capacity (MBH)	43.1	44.5	44.2	50.4	56.2	46.4	46.3	45.7	53.3	60.1	49.6	48.2	47.2	56.1	63.
75 / 63	Sensible capacity (MBH)	42.2	39.9	33.2	34.5	27.7	45.4	43.6	36.0	37.7	30.0	48.6	47.3	38.8	41.0	32.
	Total power (kW)	2.64	2.63	2.63	2.63	2.61	2.70	2.70	2.70	2.69	2.68	2.76	2.76	2.77	2.76	2.7
	Total capacity (MBH)	40.4	41.5	40.6	47.0	51.9	43.2	43.3	41.9	49.2	54.7	46.0	45.2	43.2	51.3	57.
85 / 69	Sensible capacity (MBH)	39.0	37.7	31.2	32.6	25.7	42.1	40.7	34.1	35.7	27.8	45.2	43.6	37.0	38.9	30.
	Total power (kW)	2.93	2.92	2.92	2.92	2.91	2.99	2.99	2.99	2.99	2.98	3.06	3.06	3.06	3.05	3.0
	Total capacity (MBH)	37.7	38.5	36.9	43.5	47.7	40.0	40.3	38.1	45.0	49.3	42.3	42.2	39.3	46.6	51.
95 / 75	Sensible capacity (MBH)	35.8	35.5	29.1	30.7	23.7	38.8	37.7	32.2	33.7	25.7	41.8	39.9	35.3	36.7	27.
	Total power (kW)	3.22	3.22	3.22	3.21	3.20	3.29	3.29	3.28	3.28	3.27	3.35	3.36	3.35	3.35	3.3
	Total capacity (MBH)	33.4	33.3	31.5	37.4	41.7	35.2	34.8	32.5	38.5	42.9	37.0	36.4	33.4	39.5	44.
105 / 83	Sensible capacity (MBH)	32.1	31.2	26.3	28.1	21.4	34.3	32.8	28.3	30.3	23.2	36.5	34.4	30.4	32.6	25.
	Total power (kW)	3.60	3.59	3.59	3.59	3.58	3.66	3.66	3.65	3.66	3.65	3.73	3.73	3.72	3.73	3.7
	Total capacity (MBH)	29.2	28.2	26.2	31.5	36.0	30.5	29.5	27.0	32.1	36.7	31.8	30.8	27.7	32.7	37.
115 / 89	Sensible capacity (MBH)	28.4	27.0	23.5	25.5	19.1	29.9	28.1	24.6	27.0	20.9	31.4	29.1	25.6	28.5	22.
	Total power (kW)	3.96	3.95	3.94	3.95	3.95	4.02	4.01	4.01	4.02	4.02	4.09	4.08	4.08	4.09	4.0
	Total capacity (MBH)	25.1	23.1	21.0	25.6	30.3	25.8	24.2	21.5	25.7	30.5	26.6	25.2	22.0	25.9	30.
125 / 95	Sensible capacity (MBH)	24.8	22.8	20.7	22.9	16.9	25.5	23.3	20.8	23.7	18.5	26.3	23.8	20.8	24.5	20.
	Total power (kW)	4.32	4.30	4.30	4.31	4.32	4.38	4.37	4.37	4.38	4.39	4.45	4.44	4.43	4.45	4.4

Cooling performance data - 5 ton (high speed) - model number: PCG6B60																
Condenser	ID CFM			1600					1800					2000		
entering air	IDDB (°F)	80	80	75	80	80	80	80	75	80	80	80	80	75	80	80
temp DB/WB (°F)	IDWB (°F)	57	62	62	67	72	57	62	62	67	72	57	62	62	67	72
	Total capacity (MBH)	63.4	66.7	66.4	71.6	81.6	66.2	68.6	68.7	73.7	91.8	69.1	70.5	70.9	75.8	102.1
55 / 45	Sensible capacity (MBH)	62.4	56.1	48.9	47.7	40.1	64.9	59.6	52.2	50.1	42.5	67.4	63.0	55.4	52.4	44.8
	Total power (kW)	3.39	3.44	3.43	3.51	3.33	3.50	3.53	3.52	3.60	3.41	3.60	3.62	3.60	3.69	3.49
	Total capacity (MBH)	59.7	63.0	62.7	69.3	79.9	62.4	65.0	64.8	72.3	90.1	65.2	67.0	66.9	75.4	100.3
65 / 55	Sensible capacity (MBH)	59.0	54.8	46.9	47.1	39.6	61.6	58.2	50.1	49.8	42.0	64.2	61.7	53.2	52.6	44.3
	Total power (kW)	3.66	3.69	3.69	3.77	3.72	3.76	3.78	3.78	3.86	3.80	3.87	3.88	3.86	3.94	3.89
	Total capacity (MBH)	55.9	59.3	58.9	66.9	78.2	58.6	61.4	60.9	70.9	88.4	61.3	63.5	62.8	74.9	98.5
75 / 63	Sensible capacity (MBH)	55.6	53.6	45.0	46.4	39.1	58.3	56.9	48.0	49.6	41.5	61.0	60.3	51.1	52.7	43.8
	Total power (kW)	3.92	3.94	3.95	4.02	4.11	4.03	4.04	4.04	4.11	4.19	4.13	4.14	4.13	4.20	4.28
	Total capacity (MBH)	53.5	56.0	55.5	63.2	71.9	55.8	57.9	56.9	65.9	78.0	58.1	59.9	58.4	68.7	84.1
85 / 69	Sensible capacity (MBH)	53.3	51.0	42.9	44.2	36.2	55.5	54.1	45.6	47.2	38.4	57.7	57.2	48.4	50.2	40.5
	Total power (kW)	4.28	4.28	4.29	4.36	4.44	4.38	4.38	4.38	4.45	4.53	4.48	4.48	4.47	4.54	4.63
	Total capacity (MBH)	51.1	52.7	52.0	59.4	65.6	53.0	54.5	53.0	60.9	67.6	54.8	56.3	54.0	62.5	69.6
95 / 75	Sensible capacity (MBH)	51.0	48.3	40.8	42.0	33.3	52.7	51.2	43.3	44.8	35.3	54.4	54.2	45.7	47.6	37.2
	Total power (kW)	4.64	4.63		4.70	4.78	4.73	4.73	4.72	4.79	4.88	4.83	4.82	4.81	4.88	4.97
	Total capacity (MBH)	49.4	48.1	47.2	53.8	59.7	51.1	49.7	46.7	55.1	61.3	52.8	51.2	46.2	56.3	62.9
105 / 83	Sensible capacity (MBH)	49.3	45.1	38.2	39.6	30.9	50.9	47.5	39.5	42.2	32.8	52.5	49.9	40.7	44.9	34.6
	Total power (kW)	4.91	5.15	5.15	5.21	5.29	5.00	5.24	5.23	5.30	5.38	5.09	5.34	5.32	5.39	5.47
	Total capacity (MBH)	47.6	43.7	42.6	48.5	54.0	49.2	45.0	40.7	49.4	55.3	50.8	46.4	38.7	50.3	56.5
115 / 89	Sensible capacity (MBH)	47.2	41.9	35.7	37.2	28.5	49.2	43.8	35.8	39.8	30.3	50.7	45.8	35.9	42.3	32.1
	Total power (kW)	5.16	5.65	5.64	5.70	5.78	5.25	5.74	5.73	5.79	5.87	5.34	5.84	5.82	5.88	5.96
	Total capacity (MBH)	45.9	39.2	38.0	43.1	48.4	47.4	40.4	34.6	43.7	49.2	48.8	41.5	31.2	44.3	50.0
125 / 95	Sensible capacity (MBH)	45.6	38.7	33.3	34.9	26.1	47.4	40.2	32.1	37.3	27.9	48.8	41.2	31.0	39.6	29.6
	Total power (kW)	5.42	6.15	6.14	6.20	6.27	5.51	6.24	6.23	6.28	6.36	5.59	6.34	6.32	6.37	6.44

Unit dimensions

Model		Dimensions (in.)	
Woder	Α	В	С
PCG6A36	51 1/4	35 3/4	47
PCG6B48	51 1/4	45 3/4	47
PCG6B60	51 1/4	45 3/4	50

Unit clearances 1,2

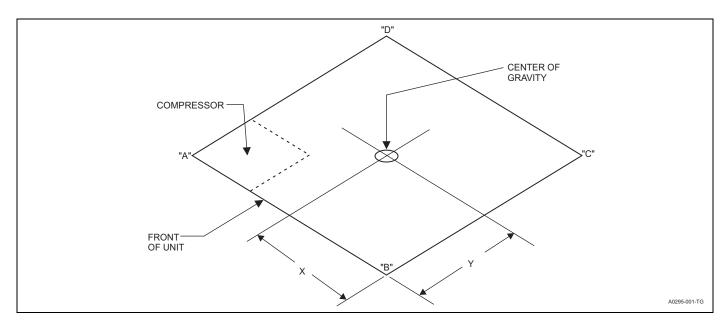
Direction	Distance (in.)	Direction	Distance (in.)
Top ³	36	Power entry (right side)	36
Side opposite ducts	36	Left side	24
Duct panel	0	Bottom ⁴	1

- 1. A 1 in. clearance must be provided between any combustible material and the supply air duct work.
- 2. Do not allow the products of combustion to accumulate within a confined space and recirculate.
- 3. Units must be installed outdoors. Overhanging structures or shrubs must not obstruct the outdoor air discharge outlet.
- 4. Units can be installed on combustible materials made from wood or class A, B, or C roof covering materials if factory base rails are left in place as shipped.

Indoor blower specifications

Model	Motor								
Model	hp	RPM	Efficiency	SF	Frame				
36075	1/2	Variable	0.8	1.0	48				
48065, 48100	3/4	Variable	0.8	1.0	48				
60065, 60100	1	Variable	0.8	1.0	48				

Sound performance


Model	Sound rating ¹		Octave band centerline frequency (Hz)									
dB(A)	dB(A)	125	250	500	1000	2000	4000	8000				
PCG6A36	75	73.8	73.1	73.3	71.0	66.1	61.0	54.9				
PCG6B48	73	77.3	73.1	69.4	69	63	60.8	53.5				
PCG6B60	75	79.5	72.1	68.9	72	66	63.5	60.9				

^{1.} Rated in accordance with AHRI Standard 270.

Electrical data

Model	Voltage-phase-	Compressor			Outdoor fan Indoor blower motor		MCA	Max fuse ² / breaker ³ size
	frequency	RLA	LRA	MCC	FLA	FLA	(A)	(A)
36075	208/230-3-60	8.8	70.0	13.8	1.7	3.8	16.6	25
48065, 48100	208/230-3-60	11.7	123.0	18.3	1.7	5.4	21.8	30
60065, 60100	208/230-3-60	14.0	93.0	21.8	1.7	7.0	26.2	40

- Minimum Circuit Ampacity.
 Maximum Overcurrent Protection in accordance with standard UL 1995.
- 3. Fuse or HACR circuit breaker is field installed.

Weights and dimensions

Weights and annensions									
Madal	Weig	ht (lb)	Center of gravity (in.)		Four-point load location (lb)				
Model	Shipping	Operating	Х	Υ	Α	В	С	D	
PCG6A360753X4	466	461	28	15	161	113	96	91	
PCG6B480653X4	520	515	28	15	189	116	93	117	
PCG6B481003X4	528	523	28	15	169	139	115	100	
PCG6B600653X4	537	532	29	15	174	142	124	92	
PCG6B601003X4	541	536	28	15	177	140	117	102	

Airflow performance - side duct application

Model	Jumper		^ 1	^ ^	^ ^			ressure (in.		Λ 0	^ ^	4.0
	positio	n	0.1 SCFM	0.2 SCFM	0.3 SCFM	0.4 SCFM	0.5 SCFM	0.6 SCFM	0.7 SCFM	0.8 SCFM	0.9 SCFM	1.0 SCFM
		Α	1600	1570	1530	1490	1460	1420	1380	1340	1280	1220
		В	1470	1430	1400	1360	1320	1280	1240	1190	1140	1100
	High cool	C	1330	1290	1260	1220	1180	1130	1080	1020	980	930
		D	1150	1110	1070	1020	970	910	860	820	770	730
		Α	1030	980	930	880	820	770	710	670	630	580
	1	В	940	890	840	770	720	670	620	570	530	480
	Low cool	С	860	810	730	680	630	580	530	470	420	370
DCCC420075		D	780	720	630	590	530	480	430	370	300	250
PCG6A36075		Α	1270	1230	1190	1150	1110	1060	1000	960	910	860
	High heat	В	1190	1150	1110	1060	1010	960	900	860	810	770
	підп пеас	С	1100	1050	1010	960	900	840	790	750	700	660
		D	980	940	890	820	770	720	670	620	580	540
		Α	1290	1250	1210	1170	1130	1080	1030	980	930	880
	Low heat	В	1190	1150	1110	1060	1010	960	900	860	810	770
	Low ricat	С	1080	1040	990	940	880	830	780	730	680	640
		D	940	890	840	770	720	670	620	570	530	480
		Α	1870	1830	1790	1750	1720	1680	1630	1590	1550	1520
	High cool	В	1730	1690	1650	1610	1570	1540	1490	1450	1410	1360
		С	1610	1570	1530	1490	1450	1400	1360	1320	1280	1220
		D	1390	1340	1300	1250	1200	1150	1100	1050	990	920
		Α	1330	1280	1240	1190	1140	1090	1030	980	920	850
	Low cool	В	1270	1220	1180	1120	1070	1020	960	900	850	770
		С	1190	1130	1080	1030	970	910	840	790	730	660
PCG6B48065		D	1010	940	880	820	750	680	610	550	440	410
	High heat	Α	1160	1110	1060	1000	950	880	810	760	700	630
		B C	1080	1020	970	910	850	780	700	650	580	520
		D	980 860	920 790	860 720	790 640	720 560	650 500	580 440	510 350	390 150	380 200
•			1120		1020		900					
		A B	1010	1070 940	880	960 820	750	830 680	760 610	700 550	640 440	580 410
	Low heat	С	880	820	740	670	590	530	470	380	190	230
		D	580	530	480	420	370	330	290	220	70	110
	High cool	A	1870	1830	1790	1750	1720	1680	1630	1590	1550	1520
		В	1730	1690	1650	1610	1570	1540	1490	1450	1410	1360
		C	1610	1570	1530	1490	1450	1400	1360	1320	1280	1220
		D	1390	1340	1300	1250	1200	1150	1100	1050	990	920
-		Α	1330	1280	1240	1190	1140	1090	1030	980	920	850
		В	1270	1220	1180	1120	1070	1020	960	900	850	770
	Low cool	С	1190	1130	1080	1030	970	910	840	790	730	660
DOOOD 40400		D	1010	940	880	820	750	680	610	550	440	410
PCG6B48100	l limb book	Α	1630	1590	1540	1510	1460	1420	1380	1330	1300	1240
		В	1530	1490	1440	1400	1360	1310	1270	1220	1170	1110
	High heat	С	1430	1380	1340	1290	1240	1190	1140	1100	1040	970
		D	1310	1260	1220	1170	1120	1060	1010	950	900	830
		Α	1480	1440	1390	1350	1300	1260	1210	1170	1110	1050
	Low heat	В	1370	1320	1280	1230	1180	1130	1080	1020	970	900
	LOW HOOL	С	1250	1200	1150	1100	1050	990	930	870	820	750
		D	1120	1070	1020	960	900	830	760	700	640	580
		Α	2140	2100	2070	2040	2000	1960	1920	1890	1850	1820
	High cool	В	1980	1950	1920	1880	1840	1810	1770	1730	1690	1650
	5	С	1880	1850	1810	1770	1740	1700	1660	1630	1590	1550
		D	1700	1670	1630	1590	1550	1520	1480	1440	1410	1370
		A	1500	1460	1420	1380	1330	1300	1260	1210	1170	1120
	Low cool	В	1450	1400	1360	1310	1270	1230	1180	1130 1080	1080 1030	1030 970
		C D	1410 1250	1360 1200	1320	1270	1220 1040	1190	1130			
PCG6B60065		A	1250		1150 1070	1100 1020	950	990 890	930 830	880 770	810 710	760 670
		В		1120						640	580	550
	High heat	С	1090 980	1020 910	960 840	910 760	840 690	750 620	690 540	500	400	340
		D	980 870	800	710	620	550	480	400	360	230	140
		A	1130	1070	1020	960	900	820	760	710	650	610
}			1130	1070	1020	900	900	020	700	710	030	
-				070	ann	9/10	760	600	620	570	400	150
	Low heat	В	1030 890	970 830	900 740	840 650	760 580	690 520	620 430	570 390	490 270	450 190

Continued on next page. See notes at end of table.

Airflow performance - side duct application (Continued)

Madel Jumper		_		• •		Exter	nal static p	ressure (in.	W.C.)			
Model	-		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	positio	position		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM
		Α	2250	2210	2190	2160	2120	2080	2050	2000	1990	1970
	High cool	В	1980	1950	1920	1880	1840	1810	1770	1730	1690	1650
	Tilgit cool	С	1880	1850	1810	1770	1740	1700	1660	1630	1590	1550
		D	1700	1670	1630	1590	1550	1520	1480	1440	1410	1370
		Α	1500	1460	1420	1380	1330	1300	1260	1210	1170	1120
	Low cool	В	1450	1400	1360	1310	1270	1230	1180	1130	1080	1030
	LOW COOL	C	1410	1360	1320	1270	1220	1190	1130	1080	1030	970
PCG6B60100		D	1250	1200	1150	1100	1040	990	930	880	810	760
F CG0D00100		Α	1630	1590	1560	1510	1470	1440	1400	1360	1320	1280
	High heat	В	1520	1480	1450	1400	1360	1320	1280	1240	1190	1150
	TilgiTileat	O	1430	1380	1340	1290	1240	1210	1160	1110	1050	1000
		D	1300	1250	1200	1150	1100	1060	1000	950	880	820
		Α	1520	1480	1450	1400	1360	1320	1280	1240	1190	1150
	Low heat	В	1410	1360	1320	1270	1220	1190	1130	1080	1030	970
	LOW Heat	C	1280	1220	1180	1130	1070	1030	970	910	850	790
		D	1110	1050	990	940	870	790	730	670	610	580

Notes:

Airflow tested with dry coil conditions, without air filters, at 230 V.

Applications above 0.8 in. W.C. external static pressure are not recommended.

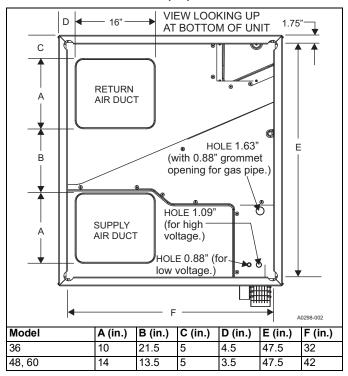
Brushless DC high efficiency enhanced ECM blower motor used for all indoor blower assemblies.

Minimal variations in airflow performance data result from operating at 208 V. The data in the table can be used in those cases.

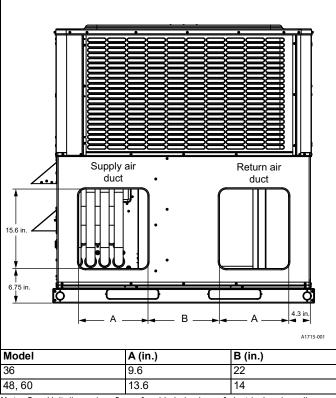
The differences between side duct airflows and bottom duct airflows are insignificant.

Heating applications are tested at 0.5 in. W.C. external static pressure. Cooling applications are tested per AHRI Standard 210/240.

Additional static resistance

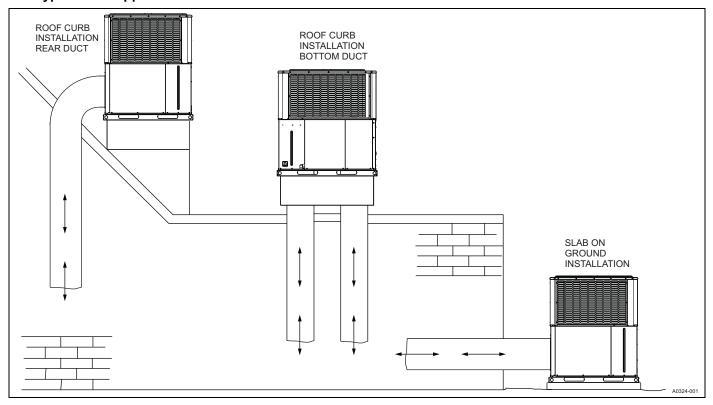

Size (ton)	СҒМ	Wet indoor coil	Economizer	Filter/frame kit
	700	0.01	0.00	0.04
	800	0.02	0.01	0.06
	900	0.03	0.01	0.08
036 (3.0)	1000	0.04	0.01	0.10
036 (3.0)	1100	0.05	0.01	0.13
	1200	0.06	0.02	0.16
	1300	0.07	0.03	0.17
	1400	0.08	0.04	0.18
	1100	0.02	0.02	0.04
	1200	0.03	0.02	0.04
	1300	0.04	0.02	0.05
	1400	0.05	0.03	0.05
048 (4.0)	1500	0.06	0.04	0.06
046 (4.0)	1600	0.07	0.04	0.07
	1700	0.07	0.04	0.08
	1800	0.08	0.04	0.09
	1900	0.09	0.05	0.10
	2000	0.09	0.05	0.11
	1100	0.02	0.02	0.04
	1200	0.03	0.02	0.04
	1300	0.04	0.02	0.05
	1400	0.05	0.03	0.05
060 (F 0)	1500	0.06	0.04	0.06
060 (5.0)	1600	0.07	0.04	0.07
	1700	0.07	0.04	0.08
	1800	0.08	0.04	0.09
	1900	0.09	0.05	0.10
	2000	0.09	0.05	0.11

Notes

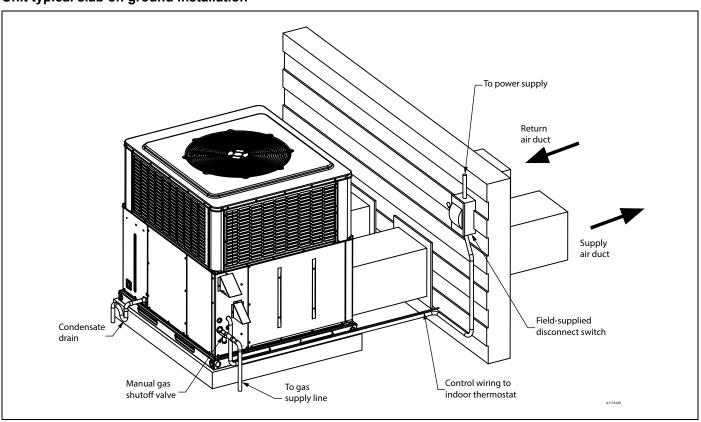

The pressure drop through the economizer is greater for 100% outdoor air than for 100% return air. If the resistance of the return air duct is less than 0.25 IWG, the unit delivers less CFM during full economizer operation.

Filter pressure drop based on standard filter media tested at velocities under 300 ft/min.

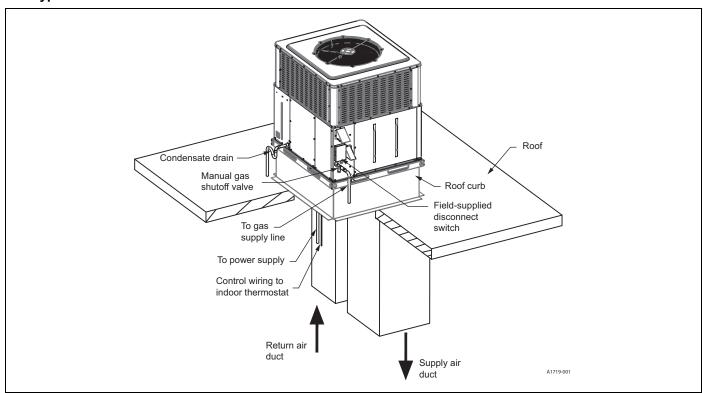
Bottom duct dimensions (in.)



Rear duct dimensions (in.)



Note: See Unit dimensions figure for side hole sizes of electrical and gas lines.


Unit typical duct applications

Unit typical slab on ground installation

Unit typical roof curb installation

Third-Party Trademarks: For information about third-party trademarks, refer to the relevant company websites.

Notes